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QUANTUM ALGORITHMS

Annotation

We addressed an elementary task of connecting two n-qubit long quantum states by a unitary
transformation. The task is similar to the objectives of the Solovay-Kitaev theorem based on the
identical assumptions that the number of possible quantum gates (unitary transformations) is
uncountable, whereas the number of finite sequences (quantum states) from a finite set is
countable. We started with transferring two consecutive time series data sets from the neutron
monitor signal into the two quantum state vectors’ probability amplitudes. Then we connected
these states by the numerically calculated unitary real value transformation matrix. It was
sampled from SO(n) group by first generating a sequence of random real value entries matrices
and second their QR factorization into unitary and upper triangular matrices. We ensured the
convergence of the process by minimizing the square root of the norma-lized by n-/ sum of the
squared differences between the matrix product of the transformation matrix with the first data
set and the second set called o. The sequence of finer adjustments of the matrix entries was tested
to achieve faster and more reliable convergence to the exact unitary transformation. The
convergence of the process up to 6=0.008 value was observed with good possibilities for the
further improvements. This procedure may be used as a part of the more complex quantum
algorithms construction schemes or quantum computation simulation.

Keywords: quantum computations, unitary transformation, state vector, time series,
algorithm.
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Introduction. Quantum computations and quantum algorithms have the certain set of
limitations on the accepted data format and the quantum gates composition. The data sequence is



usually, though not necessarily, transformed into the quantum state vector’s probabilities
amplitudes and the action of the quantum gates should be described by a unitary transformation
which reflects the possibility of the time reversal in the equations describing the quantum
phenomena [1]. We wanted to transfer the neutron monitor data in the form of the counts
sequences into the simulated quantum computer register and perform unitary operation with
them.

Experimental results and Discussions. As a subject of our analysis and numerical
calculations we took one minute resolution, 200 counts long, single channel data from the
18NM64 neutron monitor hosted at Tian-Shian high elevation research station, 3340 m above the
sea level [2]. The data are spooled and written into the data file every minute so the data piece is
200 minutes long starting from 21/11/2012:16.38.00 UTC (universal time) and ending
21/11/2012:19.57.00 UTC and corrected for atmospheric pressure.

This original signal was divided into two equal parts S;(?) and S:(?) and both were assigned to
the corresponding state vector w,=) alk;) and w,=) bjk;) as the probabilities amplitudes @, and b,.
Individual neutron counts per minute were normalized before assignment to the complex state
vector in such a way that Y'a’ =Y'b7 =1 as expected from the quantum state vector probabilities
amplitudes.

The data preprocessing also included the averaging of the both S;(?) and S:(?) signals on the
10 minutes basis in order to visually control the process of numerical iterations and get rid of the
noise. To observe the general trend of the signal behavior we applied an extra averaging and
plotted the outcomes as the dotted line over the plots of original signal, see Fig. 1(b) and (d).

The goal was to connect these two S;(?) and S»(2) parts by a unitary transformation matrix Q.
That is multiplication of the first state vector by the matrix Q transforms it to the second vector
w~=Qy;. We have found that the developed process is convergent fast enough (10" iterations and
less) though susceptible to
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Figure 1 — (a) and (b) The first S;(?) and the second S-(?) part of the original signal connected

by the unitary transformation matrix Q; (d) The quantum simulation S>(¢) of the second part of
the signal;

(c) Residuals computed as a difference between S»(2) and S-(2)

the attraction to the local extremum. To control the convergence we calculated the sum of the
squared differences between the simulated signal Qy, and its exact values called o=/} (Qy; -

o)/ (n-1)]"

We implemented the procedure outlined in [3]. Using the pseudorandom number generator
built into Matlab we generated the » by n matrix 4 with pseudorandom entries whose values
changes from -/ to +/. In this way, if n=3, the problem is reduced to the finding of the rotation
matrix connecting the two orientations of the vector in 3D space. Taking into account that
sequence of numbers generated in Matlab though very long but finite and determined by the seed
number we saved the state of the pseudorandom number generator each time the portion of
calculation was completed and use it as the seed to continue the next calculations. In such a way
we have covered the sequence of non-repeating pseudorandom numbers about n° x 10'*° long
without loss of the debagging data, see Fig.2.

We have used the QR decomposition routine built in Matlab (MATLAB 6.5, The MathWorks
Inc., Natick, MA, USA, 2002). OR is the orthogonal/triangular decomposition Matlab function
which uses the numerically stable Housholder reflection algorithm and decomposes matrix A



into unitary matrix Q and upper triangular matrix R. These resultant O matrices are the members
of SO(n) group.
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Figure 2 — The ¢ value as a function of the number of the unitary matrices generated

Random matrix theory accesses the proper probability distribution of the matrices by the
Haar measure. The Housholder method though numerically stable produces non-uniform
distribution of the eigenvaules of the matrix Q. To correct it and achieve the uniform distribution
we followed the procedure outlined in [3]. The piece of Matlab code for this procedure is listed
below.

A=(rand(signal length, signal length)-0.5)*2.0;

[Q.R] = qr(A);

H=sign(R.*eye(signal length));
Q=Q*H;

On Fig.3(a) the distribution of the eigenvalues of the computed QO matrix is plotted. More
precisely these are the arguments of the complex eigenvaules belonging to a unit circle. Ideally
they should cluster along the p(@)='/,~0.1592 value. Some apparent nonuniformity in
eigenvalues distribution around zero is visible on the Fig.3(a). It is caused by the fact that we
actually plotted the eigenvalues of the matrices already closed enough to the target
transformation matrix, not the ones calculated from the very beginning of our code execution.
One may consider this plot as an eigenvalues distributions of the computed matrix.
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Figure 3 — (a) Normalized eigenvalues density and (b) eignevalues’ argument 0 spacing
distribution.

On Fig.3(b) we can see the corrected distribution of the eigenvaules spacing. One should
expect from spacing distribution to have maximum around the 0;-0=>".1, = 0.0628 where

n=100 is the number of eigenvalues and the length of signals S;(z) and S,(z). Slight deviation
from this number has the same nature as the one described in the previous paragraph.

After we randomly generated and orthogonalized about 10°* matrices we had obtained the
pretty good (6=0.01) approximation of the target matrix and proceeded to the next stage of
refinement. That is before the QR orthogonalization procedure we were slowly varying a single

entry of the matrix 4, one at the time, testing if this variation after QR decomposition is actually
improved our approximation. If it did we saved and accepted the new matrix as the next better

approximation for the following iterations. At the certain stage the progress exhibited the signs
of saturation and we decreased the value of d4 by a factor of ten. We were able to achieve the o

value of 0.0085 which could me made even less with the subsequent tweaking of the parameters
in procedure. Order reversal in which the elements of the matrix 4 are treated turned out to be
shown below.

factor=100;

helpful in the process speedup. The piece of the Matlab code describing these procedures is
for k=N:-1:1

dA=(2*rand-1)/factor;
A(k)=A(k)+dA;
end
We were also able to observe the numerical effect when the process had collapsed to a local
minima when the value dA4 for a single entry was changed too fast and had not being followed by
the immediate adjustment of the whole matrix.

Fig. 1 shows the results of our numerical



simulations. We see very good resemblance between the exact signal S>(?) and the S,/(?) obtained
through the quantum simulation algorithm.

Conclusions. It took as about a day on Pentium IV 3.00 GHz computer with 2 Gb of RAM to
obtained the result shown on Fig.1. The procedure has proved to be very efficient and
straightforward. We are expecting to adopt it for the further time series data analysis. We are
able to avoid the explicit construction of the quantum gates. If it is necessary we could derive
them from the found unitary transformation matrix using algorithms from the well developed
matrix theory [4]. The potential for time reduction and possible applications is substantial.
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HEMTPOH/IbIK MOHHUTOP]IbIH MOJIIMETTEPIH KBAHTTBIK AJITOPUTM/IEP
CUMVIIATOPJIAPBIMEH OHZIEY

bi3 y3BIHIBIFBI 7 OUTTI KYpalTHIH )KYlie KYHiHIH €Ki KBAaHTTBHIK BEKTOPBIHBIH TYHICYl Typasbl
Kanmbel MoceneHl KapacTelpAblk. Illemimin Tanmkan Oyn  wmocene Comnoeil-KutaeBtiH
TEOpEMacChIHJIa KapacThIPbUIATBIH, KBAHTTHIK KYHIIH CcaHAy/ldbl BEKTOpPJAp IKUBIHBIHIAFBI
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ipiKTeMeNepiHiH caHbl HIeKTI 0ojla Typa, MYMKIH OOJaThIH KBaHTTBHIK BEHTWJIbJCPIIH HeMece
YHUTAPIIBI TYPICHAIPYIEPIH CaHbI MIEKCi3 KOI OONAThIHIBIFBI TYpabl YiFapbIMFa HETi3-1elIreH
Mocenere ykcac. HEHTpOHIBIK MOHUTOP CUTHAJIBIHAH MATIMETTEPAiH €Ki Ti30€riH aJblll, oJapibl
KYHIiH OacTamkpl JKOHE aKbIPFBI €Ki KBAHTTHIK BEKTOPBIHBIH CaIMaKTBHIK KOY(DQUIHEHTTEpiHE
Typrenaipaik. Oman coH OyJ eKi KBaHTTBIK BEKTOP/bl YHUTAPIbl () MaTPUIACHIHBIH KOMETIMEH,
CaHIBIK O/ICTEpPMEH TaHJAN AJbIHFAH HAKTHl JJIEMEHTTEPMEH OaillaHBICTHIPABIK. TaOblIFaH
Mmatpuria SO(n) TOOBIHBIH Myleci OONbIN TaObUIAABI, COHBIMEH KaTap OJ Ke3leHCcoK A
MaTPHUIACHIH KE3/IeHCOK HAKThl MOHIEPMEH TeHepalysuiay KOJBIMEH OHE OHBI OJaH dpi
YHHATApIB! skoHe Matnabka eHrizimreH R (yHKIMSCHIHBIH KOMETIMEH, JKOFapbl YIIOYPHIIITHI
MaTpullara OKIKT€Y apKbpUIbl ajblHFaH OojaThiH. Kom KETKI3UTN OThIpFaH MPOIECTIH
KUHAKTBUTBIFBl KYWIH aKbIPFbl BEKTOPBIHBIH €CETITENITCH )KOHE HAKThl MOHJICPiHIH apachIHIaFbl
opTalla KBaJpaTThIK aybITKy O-Hbl €CENTEeYy apKbLibl OaKblIaHbIN OThIpAbL. Tanmamn anbiHFaH A
MaTpPULIACBIHBIH MOHI MEH JJIEMEHTTEPIHIH ©3TepICiHIH JKUBIHTBIFBI YHUTAPJIbl TYPJICHIIPYAl
aHBIKTAy OaphICHIH QJIJIEKal1a Te3AeTETIiHIH KopceTTi. Oan opi )KaKcapThLTy MYMKIHAIT1 6ap, o
= 0.008 wmoni anpiHabel. KypacTelpbulFaH Oarmapiamaiiap KoHE aJITOPUTMIIECD >KUBIHTHIFBI
KBAHTTBIK €CENTeyJep/leri MyHaH JAa KypHAedl KBaHTTHIK alrOpUTMJIEP MEH CyJidamapiblH
Kypamzac 0eJiri peTiHae THIMII Typ/e KOJaHblIa axabl.

KinT ce3nep: KBaHTTHIK ecenTeyiep, OipbIHFall TYpJICHIIPY, KYH BEKTOPHI, YaKBITTHIK KaTap,
QITOPHUTM.
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OBPABOTKA JJAHHBIX HEUTPOHHOI'O MOHUTOPA

CUMVIIAATOPAMU KBAHTOBbBIX AJI'OPUTMOB

Mu1 paccMOTpEeIn 0611[}7}0 3aga4y COIPsDKECHUA ABYX KBAHTOBBIX BEKTOPOB COCTOSAHUA
CHCTEMBl JJIUHHOU B 7 our YHUTAPHBIM npeo6pa30BaHI/IeM. Pemiennas 3amada aHanorumyHa
paCCManHBaeMOﬁ B TCOpPEMC ConoBes-Kuraesa u OCHOBBIBammeﬁCﬂ Ha ITIOJIOKCHHH O TOM, 4YTO
KOJIHMYECTBO BO3MOXKHBIX KBAaHTOBBIX BEHTHUJICH WIIM YHUTApPHBIX Hp606pa30BaHHﬁ 66CC‘ICTHO, B
TO BpPEMA KaK YHUCIIO BBI60pOK N3 CYUCTHOI'O MHOKECTBA BCKTOPOB KBAHTOBBIX COCTOS-HHUA



KOHEYHO. B34B 11Be mocinenoBaTeNbHOCTH JAHHBIX M3 CHTHala HEHTPOHHOIO MOHHMTOpPA, MBI
npeoOpa3oBajil UX B BECOBbIE KOA(P(UIMEHTHI JBYX, HAYAJILHOTO M KOHEYHOTO, KBAaHTOBBIX
BEKTOPOB COCTOSIHUSI. 3aTeéM MbI COCAMHWJIM 3TH JBa KBAHTOBBIX BEKTOpa MOI0O0paHHOMN
YHCJIEHHBIMA METOJAMU YHUTApHOUN MaTpuuel O ¢ NeHCTBUTENbHBIMY ieMeHTamMu. Halinennas
MaTpulla SBIAETCS npeacraBuTeneM Tpynnsl SO(m) u Oblla TOMy4eHA IyTEM TEeHEpaluu
ClIy4yalHOM MaTpuilbl A C CIy4ailHbIMU JACHCTBHUTEIbHBIMU 3HAYCHUSIMHU U €€ JaJbHEHIIeM
pas3oKeHHeM Ha YHUTApHYI0 M BEPXHETPEYroJibHyI0 Marpuiy ¢yHKuueii (R BCTPOCHHOW B
Matiiab. Jlocturnyras CXOAMMOCTh nporecca KOHTPOJINPOBAJIaCh MOJICYETOM
CPEIHEKBAPATUYHOIO OTKJIOHEHHUS 0 MEXIy pacyeTHbIMU U TOYHBIMH 3HAYCHUSIMHU
KO3(pPUIMEHTOB ~ KOHEYHOTO  BEKTOpa  cocrosiHusA.  [lomoOpaHHble  BenWYMHA U
MOCJIEZI0BATENbHOCTh BapUaluil 3JEMEHTOB MaTpullbl 4 IOKa3ajlu CYLIECTBEHHOE YCKOpPEHHUE
mporiecca HaXxOXJACHUS YHUTApHOTO MpeoO-pasoBaHus. beimu momydensl 3HadeHust 0—0.008 ¢
BO3MOXKHOCTBIO €€ JalbHeWlero ynyudmeHus. Pazpabotannbiii Habop mporpamm U alropuTMOB
MOKeT ObITh 3()()EKTUBHO MCIIOIB30BaH KaK 4acTb 0o0Jiee CIOXKHBIX KBAaHTOBBIX AJITOPUTMOB U
CXEM B KBAHTOBBIX BBIYHCIICHUSIX.

KiloueBble cJji0Ba: KBAHTOBBIE BBIYMCICHHS, YHHTApHOE MpeoOpa3oBaHUE, BEKTOP
COCTOSIHHSI, BPEMEHHOU Psifl, AIITOPUTM.
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